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Tunnelling properties of two-well nanostructures with  
δ-like barriers placed into the strong electromagnetic 
fields 
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The theory of photon-assisted transport of electrons through the two-well resonant tunneling structure with δ-like potential 
barriers driven by electromagnetic field is developed. The transmission coefficient for the nano-structure is obtained using 
the exact solution of time-dependent one-dimensional Schrodinger equation, taking into account the electron-photon 
interaction. 
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1. Introduction 
 
The rapid progress in THz devices [1, 2] operating at 

the basis of  nano-size resonant tunneling structures (RTS) 
facilitates  the constant experimental [3-6] and theoretical 
[7-17] research of photon-assisted transport (PAT) of 
electrons though the nano-structures driven by 
electromagnetic fields.  

The theory of nonlinear electronic transport through 
the structures with time-periodical potentials is developed 
within different approaches [18, 19]. In the wide group of 
papers the model tunneling Hamiltonians, written in the 
representation of second quantization [10-13] were used 
together with the well developed mathematical techniques, 
such as density and scattering matrix, nonequilibrium 
Green’s-Keldysh functions and other. The main advantage 
of tunneling Hamiltonian is that it can take into account 
different dissipative subsystems: phonons, impurities, 
electron-electron interaction and so on. It gives 
opportunity to study the ballistic transport of electrons and 
distinguish the role of dissipative processes in nonlinear 
transport phenomena.  

The second group of theoretical papers [7-9, 14-17] is 
based at the Hamiltonians obtained in the coordinate 
representation. They do not contain any fitting parameters 
and are characterized by physical and geometrical 
parameters of nano-structures. 

Studying the PAT of electrons, the Floquet method 
[18, 19] is usually used together with transfer-matrix, S-
matrix, classic Green’s functions, times-dependent 
perturbation theory and so on. In order to simplify the 
analytical and numerical calculations considering that the 
interaction between electrons and electromagnetic field is 
actual inside of the nanostructure only, the one-
dimensional model is used as a rule. The interaction in it is 
usually transformed to the time-dependent potential: 

t zU ωcos)( . 

In this paper, we develop the theory of nonlinear РАТ 
of electrons through the open two-well RTS driven by the 
periodical electromagnetic field, exactly taking into 
account the electron-field interaction in the Hamiltonian of 
the system. We obtain the exact solutions of the complete 
Schrodinger equation for all parts of the structure. 

 
 
2. Transmission coefficient for the two-well  
    RTS driven by electromagnetic field 
 
We study the transport properties of two-well RTS 

placed into the outer medium and driven by the 
homogeneous electromagnetic field tЄtЄ ω= cos2)(  
characterized by the intensity Є and frequency ω . In the 
Cartesian coordinates with the beginning at the left 
interface of the input barrier, fig. 1, and 0z axis 
perpendicular to the planes of nano-films, the electron 
moves along the 0z axis from the left to the right through 
the nano-structure. 

 

 
 

Fig. 1. Potential energy scheme for the electron and 
geometry of two-well RTS. 
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Neglecting the scattering inside of the RTS, the time-
dependent one-dimensional Schrodinger equation for the 
electron is written as 
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The complete Hamiltonian of the electron-photon 

system in eq. (1) contains the kinetic energy of electron 
(the first term), its potential energy written in typical δ-
barrier approximation [16, 17]:  

 
)()()()( 3121 bzUbzUzUzU −∆+−∆+∆= δδδ ,  (2) 

 
linear over the intensity term describing the electron-
electromagnetic field interaction  
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and square over the field the fourth term, where: е, m – 
charge and mass of pure electron; U, )3,2,1(∆  – height and 
widths of potential barriers,  respectively; 1b  – the width 
of input potential well; b – the size of two-well RTS. 

The eq. (1) in the inner parts of nano-structure 
( bz <<0 ) has two exact linearly independent solutions 
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which describe the forward and backward waves with 
quasi-momentum mEk 21

0
−= h . Outside of the RTS the 

solutions are evidently simplified [17]. 
The exact wave function of the whole system, as 

linear combination of both solutions (4), taking into 
account the expansion of all time-periodical functions into 
the exact Fourier ranges and considering the 
superpositions with all field harmonics is written as 
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The convenient denotations: 
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have the evident physical sense: α  – dimensionless 
kinetic energy of electron with quasi-momentum bk  and 
β  – dimensionless potential energy of electron-field 
interaction written in the units of electromagnetic field 
energy ω=Ω h . 

All unknown coefficients ( ±
psA , ) are definitely fixed 

by the conditions of continuity of wave functions and their 
densities of currents at all interfaces in any moment of 
time: 
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These conditions must be fulfilled for each separate 

harmonic (р). We assume that the electron transports 
through the main canal (p=0), thus: 00,0 ≠+

=pA , 

00,0 =+
≠pA and 0,3 =−

pA  because the reflected wave is 
absent outside of the RTS. 
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The system of eq. (9) contains the infinite number of 
equations respectively ±

psA ,  coefficients due to the infinite 
number of harmonics.  However, it can be confined by the 
demanded rather big number of positive ( +N ) and 
negative ( −N ) harmonics during the numerical 
calculations. 

The inhomogeneous system of eqs. (9) allows to 
obtain all ±

psA ,  coefficients throughout +
0,0A  at the finite 

number of harmonics. The latter is found from the 
normality condition for the complete wave function of the 
whole system 
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Considering the electromagnetic field, the density of 

current in any moment of time is written within the known 
expression [14] 
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After calculation of the densities of currents in 

forward ( +j ) and backward ( −j ) directions at the 

entrance ( 0=z ) and exit ( bz = ) of RTS, the time-
independent transmission coefficient ),( ωED  is obtained 

from the ratio between the densities of currents +
0j and +

3j , 
averaged over the period of time T  
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The obtained transmission coefficient (12) for the 

two-well RTS allows us to calculate the resonance 
energies and widths of main and arbitrary number of 
satellite quasi-stationary states of electron, interacting with 
electromagnetic field of arbitrary intensity (Є)  and 
frequency (ω). The developed theory proves that this 
interaction, besides the renormalization of pure quasi-
stationary states of electron, brings to the appearance of 
new mixed states, which produce the specific transmission 
canals of two-well RTS.  
 
 
 

4. The properties of transmission canals of  
     two-well RTS driven by electromagnetic  
     field 

 
It is well known [20], that without the electromagnetic 

field the resonance energies ( nE ) of electron quasi-
stationary states in RTS with the Hamiltonian like: 
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h  can be calculated using different 

techniques: S-matrix, probability distribution function, 
transmission coefficient. The same techniques should be 
used for the calculation and analysis of electron-photon 
quasi-stationary spectrum in RTS driven by 
electromagnetic field of arbitrary intensity (Є ) and 
frequency (ω). 

We observe the typical, often experimentally [1, 2, 5] 
and theoretically [19-21] studied two-well RTS 
(In0.52Al0.48As/In0.53Ga0.47As) with known geometrical 
parameters: nm bbb 921 =+= , nm 121 =∆ , nm 92 =∆ , 

nm 123 =∆  and physical ones: meV U 516= , 

0m m 043.0= , 0m  – is the mass of pure electron.  We 
calculate the resonance energies of electron-photon system 
using the theory for the transmission coefficient 

),( ωED developed in the previous Section. The 
magnitudes of the resonance energies are fixed by the 
respective positions of D maxima in the scale of electron 
energies Е.  

In fig. 2 the resonance energies of electron-photon 
quasi-stationary states are shown as functions of the 
position of inner potential barrier between two outer ones 
( 1b ) of RTS driven by electromagnetic field with non-
resonance energy 153=Ω meV and such intensity (Є) 
which provides the driving potential energy 20=bU meV 
in the RTS with the size nm b 9= .   

Fig.2 shows that the spectrum contains the 
renormalized main electron quasi-stationary states with the 
energies )0( =pnE  and the states which are the superpositions 
of electron ones and the respective number of satellite 
field harmonics with the energies Ω+= pEE npn )( , 0≠p  
which appear due to the interaction with the 
electromagnetic field. It is clear that the behaviour of 
resonance energies of main and satellite states is 
qualitatively similar. 

The resonance energy of )( pn  state non-

monotonously depends on 1b , displaying the  ascending 
and descending plots and containing n  maxima and 1+n  
minimums. The analysis of the curves allows to 
distinguish the region of maximal location of electron in 

)( pn state inside of RTS at arbitrary 1b . If the resonance 
energy is at the ascending plot, then the electron with 
maximal probability is located inside of the output 
potential well with the width 2b . If it is at the descending 
plot, then the electron with maximal probability is located 
inside of the input potential well with the width 1b . 
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Fig. 2. Resonance energies of main )0(n  and satellite 

)0( ≠pn  quasi-stationary states of electron-photon 
system in two-well RTS as function of 1b  at 

meVUb 20= ; meV153=Ω ;  nmb 9= ;  nm121 =∆ ; 
                               nm92 =∆ ; nm123 =∆ . 

 
 

Fig. 2 also proves that the anti-crossings between 
main )0(n  and satellite )0(1+n and between satellite 

)( pn  and )(1 pn +  quasi-stationary states are observed 
in the symmetrical two-well RTS ( 5.421 == bb nm). The 
magnitudes of anti-crossings between the resonance 
energies of electron-photon states are determined by the 
relationships between the widths of inner ( 2∆ ) and outer 
( 1∆ , 3∆ ) potential barriers, in analogy with paper [20] 
where the electromagnetic field is not considered. The 
collapse of anti-crossing states happens at 312 ∆+∆>∆ , 
when the distance between both wells becomes rather big. 

The PAT of electrons through the one-well RTS was 
studied in refs. [18-21] in resonance fields with the 
energies: 11, −− −=Ω=Ω nnnn EE . The new phenomena 
concerning the transmission properties of nano-structure 
were observed: the increasing field intensity caused the 
splitting of the maximum of transmission coefficient into 
two ones. Therefore, we are going to study the behaviour 
of transmission coefficient for the two-well RTS at the 
resonance energies of electromagnetic field. 
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Fig. 3. Transmission coefficient (D) as function of 
electron energy (E) in the vicinity of the energies )(1 aE  

and )(2 bE  at the resonance energy of electromagnetic 

field: 21Ω = 307.2 meV  and  driving  potentials:  Ub=0,  
      10, 20 meV for RTS with geometrical parameters:  
                               1b =0 nm; 2b =9 nm. 

 
 

The transmission coefficient (D) as function of 
electron energy (Е) for the three geometrical 
configurations of two-well RTS: 01 =b nm (fig.3), 

25.24/1 == bb nm (fig.4), 5.42/1 == bb nm (fig.5) and 
three magnitudes of driving potential energy: 

20,10,0   Ub = meV is calculated. The resonance energy of 
electromagnetic field is: 1221 EE −=Ω=Ω  (figs.3-5). It 
corresponds to the difference between the energies of 
“pure” quasi-stationary states of electron. 
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Figs. 3-5 prove that the dependence of transmission 
coefficient, shown in the vicinity of resonance energies of 
first (fig.3a, fig.4a, fig.5) and second (fig.3b, fig.4b, fig.5) 
main electron-photon quasi-stationary states is 
qualitatively similar for the three geometrical 
configurations of RTS.  

When the field is absent ( 0=bU meV) the 
transmission coefficient D(E) has the shape of Lorentz 
curve. Herein, the best transmission properties 
( 1max ≈D ) are observed for the symmetrical two-well 
RTS (fig.5). 
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Fig. 4. Transmission coefficient (D) as function of 
electron energy (E) in the vicinity of the energies )(1 aE  

and )(2 bE  at the resonance energy of electromagnetic 

field:  21Ω =517.2 meV  and  driving  potentials:  bU =0,   
        10, 20 meV for RTS with geometrical parameters:  
                         1b =2.25 nm; 2b =6.75 nm. 
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Fig. 5. Transmission coefficient (D) as function of 
electron energy (E) in the vicinity of the energies 1E  and 

2E  at the resonance energy of electromagnetic field: 

21Ω =57.8 meV and driving potentials: bU =0, 10, 20 

meV for RTS with geometrical parameters: 1b =4.5 nm;  

                                    2b =4.5 nm. 
 

When the driving potential ( bU ) appears and becomes 
stronger, the Lorentz curve is deformed, its maximum 
decreases and D(E) takes the shape of two-humped curve 
with two Lorentz-like peaks with increasing distance 
between them. The appearance of two maxima in the 
vicinity of )0(1E energy (figs.3a, 4a, 5) is caused by the 

superposition of first main quasi-stationary state )0(1  
and first negative satellite of the second main quasi-
stationary state )1(2 − . In the vicinity of )0(2E  energy 
(figs.3b, 4b, 5) the same is caused by the superposition of 
second main quasi-stationary state )0(2  with the first 
positive satellite of the first main quasi-stationary state 

)1(1 + . This pair of maxima produces two canals of 
almost equal transmission for the RTS. The transmission 
of two canals in the vicinity of )0(2E  energy for the 
asymmetrical one-well RTS (fig.3) and two-well RTS with 
narrower input potential well (fig.4), is much bigger than 
the transmission of two canals in the vicinity of )0(1E  
energy. 

Analysis of figs. 3-5 brings to the conclusion: 
independently of the position of inner barrier, in the 
vicinity of electron resonance energies 1E  and 2E  at the 
field resonance energy 1221 EE −=Ω , the transmission of 
both main canals decreases and each of them splits into the 
pair of new canals with decreasing transmission when the 
driving potential bU  becomes stronger. The both pairs of 
canals display the maximal transmission for the 
symmetrical two-well RTS. 
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